The angles ∠GHI and ∠JKL are complementary, this means that they add up to 90°
Then we can say that
![\angle\text{GHI}+\angle\text{JKL}=90^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/w8190titm2wmgrpz43y5a3m1py1xh9d7t3.png)
For
∠GHI= (5x+6)°
∠JKL= (3x+4)°
![(5x+6)+(3x+4)=90](https://img.qammunity.org/2023/formulas/mathematics/college/evz2rdjzsm7fu9u87a4r30hip0sd6k681o.png)
From this expression you can calculate the value of x
First step is to order the like terms together and simplify them}
![\begin{gathered} 5x+3x+6+4=90 \\ 8x+10=90 \\ 8x=90-10 \\ 8x=80 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/miahl3xntd72sc3cunb0e3n1zg65uz0j29.png)
Next divide both sides of the equation by 8 to reach the value of x
![\begin{gathered} (8x)/(8)=(80)/(8) \\ x=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kjzcn71c32deqqppg7wzmtrx41ceesblr5.png)
Now that we knoe the value of x, we can calculate the measure of both angles
![\begin{gathered} \angle\text{GHI}=5x+6 \\ \angle\text{GHI}=5\cdot10+6 \\ \angle\text{GHI}=56 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zvnk221iiy88987hijqbm3q8j1o9s0myvr.png)
![\begin{gathered} \angle\text{JKL}=3x+4 \\ \angle\text{JKL}=3\cdot10+4 \\ \angle\text{JKL}=34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/184ungn3c44ottq9i3t13awy5549l4v00d.png)