cosine (θ) = 4/5
1) Given that the sin(θ) is in Quadrant I , and θ lies in this quadrant too
Let's remind the signal fo that:
2) Let's use the Pythagorean Identity to find the value of the cosine (θ):
![\begin{gathered} \sin ^2(\theta)\text{ +}\cos ^2(\theta)\text{ =1} \\ ((3)/(5))^2+\cos ^2(\theta)\text{ =1} \\ \cos (\theta)\text{ =}\sqrt[]{1-(9)/(25)} \\ \cos \text{ (}\theta)\text{ =}\sqrt[]{(25)/(25)-(9)/(25)} \\ \cos \text{ (}\theta)\text{ =}\sqrt[]{(16)/(25)} \\ \cos \text{ (}\theta)=(4)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hp6al61ku5b8ad4dz6z92ox1808hfpfdfu.png)
3) As the value of the sine and the cosine in Quadrant I is positive then we can state the cosine (θ) = 4/5