Question 5
Two angles are called complementary if their measures add to 90 degrees.
Given:
![\begin{gathered} \angle\text{ 1 is a complement of }\angle2 \\ m\angle2=36^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/clskidntz6c67qijh3yjdm3r8y3u03wqn6.png)
Applying the definition for complementary angles, we can write:
![\begin{gathered} m\angle1\text{ + m}\angle2=90^0 \\ m\angle1+36^0=90^0 \\ m\angle1=90^0-36^0 \\ m\angle1=54^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bvwpghw881dg3of20dus7og0pcx7ox2uv0.png)
Answer: 54 degrees
Question 6
Given:
![\begin{gathered} \angle3\text{ is a complement of }\angle4 \\ m\angle4=75^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r25oi12oioa2prvqjyl9h5ct4ti04dhrnk.png)
Applying the definition for complementary angles, we can write:
![\begin{gathered} m\angle3\text{ + m}\angle4=90^0 \\ m\angle3+75^0=90^0 \\ m\angle3=90^0-75^0 \\ m\angle3=15^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c1x294l2r0togrrihh2fs5ai9orfx85aej.png)
Answer: 15 degrees
Question 7
Two angles are called supplementary if their measures add to 180 degrees.
Given:
![\begin{gathered} m\angle WXY=(6x+59)^0 \\ m\angle YXZ=(3x-14)^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/35hg8dz1n8fgyin6ui5dnwo6eorbzw22xl.png)
Using the definition for supplementary angles, we can write:
![\begin{gathered} m\angle WXY\text{ + m}\angle YXZ=180^0 \\ (6x+59)^0+(3x-14)^0=180^0 \\ \text{collect like terms} \\ 6x\text{ + 3x + 59 -14 = 180} \\ 9x\text{ + 45 = 180} \\ 9x\text{ = 180 - 45} \\ 9x\text{ = 135} \\ \text{Divide both sides by 9} \\ (9x)/(9)\text{ =}(135)/(9) \\ x\text{ = 15} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pdjpm5kqzppqdfg7l3zwnsrobj4sjp976q.png)
Substituting the value of x into angles WXY and YXZ:
![\begin{gathered} m\angle WXY=(6x+59)^0 \\ =\text{ 6}*15\text{ + 59} \\ =149^0 \\ \\ m\angle YXZ=(3x-14)^0 \\ =\text{ 3}*15\text{ - 14} \\ =31^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ib8g8i46qoe6dov1rm2ozzo9izphn69qnn.png)
Answer:
The measure of angle WXY = 149 degrees
The measure of angle YXZ = 31 degrees