44.0k views
0 votes
A student solve the equation… (question in the picture). Thank you

A student solve the equation… (question in the picture). Thank you-example-1

1 Answer

3 votes

Answer:

The equation is given below as


(sin(2x))/(cos(x))=2,0\leq x\leq\pi

Step 1:

Cross multiply


\begin{gathered} \begin{equation*} (sin(2x))/(cos(x))=2 \end{equation*} \\ sin(2x)=2cos(x) \\ sin(2x)-2cos(x)=0 \end{gathered}

Step 2:

Apply the trig identity below


sin(2x)=2sin(x)cos(x)
\begin{gathered} s\imaginaryI n(2x)-2cos(x)=0 \\ 2sin(x)cos(x)-2cos(x)=0 \\ by\text{ rearranging, we will have} \\ -2cos(x)+2sin(x)cos(x)=0 \end{gathered}

Step 3:

Factor out 2cos(x)


\begin{gathered} -2cos(x)+2s\imaginaryI n(x)cos(x)=0 \\ 2cos(x)(-1+sin(x))=0 \\ 2cos(x)(sin(x)-1)=0 \\ 2cos(x)=0,sin(x)-1=0 \\ cos(x)=0,sin(x)=1 \\ x=\cos^(-1)0,x=\sin^(-1)1 \\ x=(\pi)/(2),x=(\pi)/(2), \end{gathered}

Step 4:

Check for undefined points


\begin{gathered} cos(x)=0 \\ x=\cos^(-1)0 \\ x=(\pi)/(2) \end{gathered}

Since the equation is undefined for π/2,

Hence,

There is no solution for x


\mathrm{No\:Solution\:for}\:x\in \mathbb{R}

Her error is that π/2 will make the equation undefined for the equation in the question.

Therefore,

π/2 cannot be the answer

User Linnea
by
3.7k points