83.7k views
5 votes
consider the discrete random variable x given in the table below calculate the mean variance and standard deviation of X also calculate the expected value of x round solution to three decimal places if necessary

1 Answer

3 votes

We have a table for the probability distribution P(X) for the discrete variable x.

1) We must calculate the mean value μ of the variable x, using the following formula and the data from the table we have:


\begin{gathered} E(x)=\mu=\sum ^{}_ix_i\cdot P(x_i) \\ \mu=1\cdot P(x=1)+6\cdot P(x=6)+11\cdot P(x=11)+15\cdot P(x=15)+18\cdot P(x=18) \\ \mu=1\cdot0.07+6\cdot0.07+11\cdot0.08+15\cdot0.09+18\cdot0.69 \\ \mu=15.14 \end{gathered}

2) We must calculate the variance σ² of the variable x, using the following formula and the data from the table we have:


\begin{gathered} \sigma^2=\sum ^{}_i(x_i-\mu)^2\cdot P(x_i) \\ \sigma^2=(1-\mu)^2\cdot P(1)+(6-\mu)^2\cdot P(6)+(11-\mu)^2\cdot P(11)+(15-\mu)^2\cdot P(15)+(18-\mu)^2\cdot P(18) \\ \sigma^2=26.8604 \\ \sigma^2\cong26.860 \end{gathered}

3) We calculate the standard deviation σ of the variable x simply taking the square root of the variance σ²:


\begin{gathered} \sigma=\sqrt[]{\sigma^2} \\ \sigma=\sqrt[]{26.8604} \\ \sigma\cong3.891 \end{gathered}

4)

User Delfina
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories