68.2k views
2 votes
Find the vertices and foci of the ellipse.49x^2 = 81 - 81y^2

1 Answer

5 votes

Given the following equation of an ellipse:


49x^2=81-81y^2

The standard form equation of an ellipse is:


\text{ }((x-h)^2)/(a^2)\text{ + }((y-k)^2)/(b^2)\text{ = }1

Where (h, k) is the center, a and b are the lengths of the semi-major and the semi-minor axis.

Let's transform it into the standard form:


49x^2=81-81y^2
49x^2+81y^2=81
(49x^2+81y^2=81)/(81)
(49x^2)/(81)+(y^2)/(1)=1
(x^2)/((81)/(49))+(y^2)/(1)=1
\frac{(x-0)^2^{}}{(81)/(49)}+\frac{(y-0)^2^{}}{1}=1
((x-0)^2)/(((9)/(7))^2)+((y-0)^2)/(1)=1

From this equation, we get:


\begin{gathered} \text{ h = 0} \\ \text{ k = 0} \\ \text{ a}^2\text{ = }(81)/(49)\text{ }\rightarrow\text{ a = }\sqrt[]{(81)/(49)}\text{ }\rightarrow\text{ a = }(9)/(7) \\ \text{ }b^2\text{ = 1 }\rightarrow\text{ b= }\sqrt[]{1}\text{ }\rightarrow\text{ b = 1} \end{gathered}

For c,


\text{ c = }\sqrt[]{a^2-b^2}\text{ = }\sqrt[]{((9)/(7))^2\text{ - 1}}\text{ = }\sqrt[]{(81)/(49)\text{ - 1}}\text{ = }\sqrt[]{(81)/(49)-(49)/(49)}\text{ = }\sqrt[]{(32)/(49)}\text{ = }\frac{4\sqrt[]{2}}{7}

Let's now get the foci of the ellipse:

The first focus: (h - c, k)


\text{ (h - c, }k)\text{ = (0 - }\frac{4\sqrt[]{2}}{7},\text{ 0)}
\text{ (h - c, }k)\text{ = (-}\frac{4\sqrt[]{2}}{7},\text{ 0)}

The second focus: (h + c, k)


\mleft(h+c,k\mright)\text{ = (0 + }\frac{4\sqrt[]{2}}{7},\text{ 0)}
(h+c,k)\text{ = (}\frac{4\sqrt[]{2}}{7},\text{ 0)}

Next, let's find the vertices:

The first vertex: (h − a, k)


\text{ (h - a, k) = }(0\text{ - }(9)/(7),\text{ 0)}
\text{ (h - a, k) = }(\text{-}(9)/(7),\text{ 0)}

The second vertex: (h + a, k)


\text{ (h + a, k) = }(0+(9)/(7),\text{ 0)}
\text{ (h + a, k) = }((9)/(7),\text{ 0)}

In Summary:

Therefore, in an ellipse with the equation 49x^2 = 81 - 81y^2,

The foci of the ellipse are:


\text{(-}\frac{4\sqrt[]{2}}{7},\text{ 0), (}\frac{4\sqrt[]{2}}{7},\text{ 0)}

The vertices of the ellipse are:


(\text{-}(9)/(7),\text{ 0), }((9)/(7),\text{ 0)}

User Cato
by
4.8k points