85.6k views
5 votes
Arrange these functions from the greatest to the least value based on the average rate of change in the specified Interval. Rx) = x² + 3x interval: (-2.3] f(x) = 3x -8 interval: (4,5) f(x) = x² - 2x interval: (-3, 4) f(x) = x²-5 interval: (-1, 1] > > >

User Alexey Ten
by
8.2k points

1 Answer

5 votes

\begin{gathered} \text{Arranging from greatest to least value based on value obtained, we have} \\ x^2+3x,3x-8,x^2-2x,x^2-5 \\ 1,2,3,4 \end{gathered}

To find the average rate of change of a function within a given interval, we use the following formula;


\frac{f(b)\text{ - f(a)}}{b-a}

So for the first equation, we have;


\begin{gathered} f(x)=x^2\text{ + 3x} \\ a\text{ = -2} \\ b\text{ = 3} \\ f(a)=f(-2)=(-2)^2+3(-2)=4-6=-2 \\ f(b)=f(3)=3^2\text{ + 3(3)=9+9 = 18} \\ \\ So; \\ (f(b)-f(a))/(b-a)\text{ = }(18-(-2))/(3-(-2))=(18+2)/(3+2)=(20)/(5)=4 \end{gathered}

For the second equation, we have;


\begin{gathered} f(x)\text{ = 3x-8} \\ a=4 \\ b=5 \\ f(a)=f(4)=3(4)-8=12-8=4 \\ f(b)=f(5)=3(5)-8=15-8=7 \\ (f(b)-f(a))/(b-a)=(7-4)/(5-4)=(3)/(1)=3 \end{gathered}

For the third equation, we have;


\begin{gathered} f(x)=x^2-2x \\ a=-3 \\ b=4 \\ f(a)=f(-3)=(-3)^2-2(-3)=9+6=15 \\ f(b)=f(4)=4^2-2(4)=16-8=8 \\ \\ (f(b)-f(a))/(b-a)=\text{ }(15-8)/(4-(-3))=(7)/(7)=1 \end{gathered}

For the last equation, we have;


\begin{gathered} f(x)\text{ = }x^2-5 \\ a=\text{ -1} \\ b=1 \\ f(a)=f(-1)=(-1)^2-5=1-5=-4 \\ f(b)=f(1)=1^2-5=1-5=-4 \\ \\ (f(b)-f(a))/(b-a)=\text{ }(-4-(-4))/(1-(-1))=(0)/(2)=\text{ 0} \end{gathered}

So arranging the functions from highest to lowest based on the value obtained, we have;


x^2+3x,3x-8,x^2-2x,x^2-5

User Earnest
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories