Let us begin by representing the relationship using mathematical symbols
![y\text{ }\alpha\text{ }\frac{1}{\sqrt[3]{x}}](https://img.qammunity.org/2023/formulas/mathematics/college/moky31fla1fya9ea22m1h6ct3mc4ascz24.png)
Hence, we can write:
![y\text{ = }\frac{k}{\sqrt[3]{x}}](https://img.qammunity.org/2023/formulas/mathematics/college/lu8jf1cigem8c9faogxlse4y7nk6c65cu9.png)
Where k is the constant of proportionality
When x = 27 and y =5, we have the equation representing the relationship to be:
![\begin{gathered} 5\text{ = }\frac{k}{\sqrt[3]{27}} \\ k\text{ = 5 }*\text{ 3} \\ k\text{ = 15} \\ \\ y\text{ = }\frac{15}{\sqrt[3]{x}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e8v1j716w8gacsf8hh1v18ywxdarbni6xc.png)
We are required to find y when x = 125
When we substitute the value of x into the equation above, we have the value of y to be:
![\begin{gathered} y\text{ = }\frac{15}{\sqrt[3]{125}} \\ y\text{ = 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pbxc1sfvfidbevg98yr3msiusjuzzakus4.png)
Answer:
The value of y is 3