eThe table of the observation is shown below:
Using a graphing calculator, the graph is plotted as shown below:
QUESTION 1:
The regression function that models the results can be gotten by checking the parameters of the graph as provided by the graphing calculator. These are shown below:
If the general form of an exponential function is given to be:
![y=a(b)^x](https://img.qammunity.org/2023/formulas/mathematics/college/x4kto8751eypenmr0i3prbmrtznyb1ero8.png)
From the parameter. we have:
![\begin{gathered} a=211 \\ \text{and} \\ b=1.07 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/27vuz2rd1tvyn5k18folak05130vjepc1h.png)
Therefore, the regression function will be:
![y=211(1.07)^x](https://img.qammunity.org/2023/formulas/mathematics/college/8ynvecge5f98woeql12hox401ly4k38gqk.png)
QUESTION 2:
The bacteria count at the beginning of the experiment can be gotten at x = 0. Therefore, we make this substitution into the regression function:
![\begin{gathered} At\text{ }x=0 \\ y=211(1.07)^0 \\ y=211*1 \\ y=211 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o5p8lxth1g9qeui1iv7j2uw82odvkao1ig.png)
Therefore, the bacteria count will be 211.
QUESTION 3:
The growth rate in an exponential function is represented by r, if the function is given to be:
![y=a(1+r)^x](https://img.qammunity.org/2023/formulas/mathematics/college/zju8ii5bf2piwkg7euivlsfo19d8ktxf14.png)
Comparing with the equation we used above, we have that:
![\begin{gathered} b=1+r \\ \therefore \\ r=b-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s64apb4ena17t4nsv5mcidlxrrm1fgrc12.png)
Substituting for b = 1.07, we have:
![\begin{gathered} r=1.07-1 \\ r=0.07 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fpvrmupcrwemwizos51s0a3bu9os3k30u4.png)
In percent, the rate will be:
![\begin{gathered} r=0.07*100 \\ r=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n4606ktgb2r0fioefqf2civp3jzomx7y9j.png)
The growth rate is 7%.