Exponential growth model common ratio is defined as:
![r=(1+k)](https://img.qammunity.org/2023/formulas/mathematics/college/hskbrbbfdtigtv5mvxeqrqke3ozwq14n3e.png)
k is the growth rate written in decimals.
Given data:
Pn is the predicted number of speeding tickets during the year 2012+n
P0: 240 (First term)
Growth rate: 15% (0.15)
Then, the common ratio (r) is:
![r=(1+0.15)=1.15](https://img.qammunity.org/2023/formulas/mathematics/college/lyqo0bnjuejyclvlmpw5p77dhu343gv4cu.png)
Recursive formula:
![\begin{gathered} \begin{cases}P_0 \\ P_n=P_(n-1)\cdot r\end{cases} \\ \\ \begin{cases}P_0=240 \\ P_n=P_(n-1)\cdot1.15\end{cases} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fdozsxacvi3s0z8dzguti7w2x45jaaibhn.png)
Explicit formula:
![\begin{gathered} P_n=P_0\cdot r^(n-1) \\ \\ P_n=240\cdot(1.15)^(n-1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uivub2ab129glpqthvoq7jrctztrwh0yuf.png)
If this trend continues, how many speeding tickets are predicted to be issued in 2027:
Identify the value of n corresponding to year 2027:
![\begin{gathered} 2027=2012+n \\ 2027-2012=n \\ \\ n=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l6uhmq203qagrhogyipq0svzzm891veu0j.png)
Find the predicted number of speeding tickets during the year 2012+15:
![\begin{gathered} n=15 \\ P_(15)=240\cdot(1.15)^(15-1) \\ P_(15)=240\cdot1.15^(14) \\ P_(15)\approx1698 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8wyvab5vr6fuc54wbah3amfh37t4ybokct.png)
Then, in year 2027 the number of speeding tickets is: 1698