4.1k views
4 votes
Use the Pythagorean trig identity to find tanx if cosx equals 7/25

User Thilina Kj
by
3.4k points

1 Answer

2 votes

Given:


\cos x=(7)/(25)

we know that:


\cos x=\frac{adjacent}{\text{hypotenuse}}

So, the adjacent side to x = 7 and the hypotenuse = 25

We can calculate the opposite side by the Pythagorean theorem

So, the opposite side will be:


\sqrt[]{25^2-7^2}=\sqrt[]{625-49}=\sqrt[]{576}=24

So, tan x will be:


\begin{gathered} \tan x=(opposite)/(adjacent) \\ \\ \tan x=(24)/(7) \end{gathered}

Another solution:

We know that:


\begin{gathered} \cos x=(1)/(\sec x)=(7)/(25) \\ \\ \sec x=(25)/(7) \end{gathered}

using the Pythagorean trig identity


\begin{gathered} \tan ^2x+1=\sec ^2x \\ \tan ^2x=\sec ^2x-1=((25)/(7))^2-1=(625)/(49)-1 \\ \\ \tan ^2x=(576)/(49) \\ \\ \tan x=\sqrt[]{(576)/(49)}=(24)/(7) \end{gathered}

So, the answer will be:


\tan x=(24)/(7)

User Pcting
by
3.6k points