Solution
he formula to determine the magnitude of a vector (in two dimensional space) v = (x, y) is:
|v| =√(x2-x1)^2 + y2-y1)^2.
This formula is derived from the Pythagorean theorem.
![\begin{gathered} \bar{v}=(13.5,-21.07) \\ \bar{w}=(-0.9,-14.6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6gamprie79mcs4k7dy97c6l9tr5xjsjy9x.png)
![\begin{gathered} i=i_v-i_w \\ i=13.5--0.9 \\ i=14.4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/65c5l0ctg9kkbpeji8upnyoeq0ru3k58u9.png)
![\begin{gathered} j=j_v-j_w \\ j=-21.07--14.6 \\ j=-6.47 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ufw41dcx4fgirs1zrcjrglqy6zp26qxqmb.png)
Therefore the magnitude of the resultant vector is
![\begin{gathered} |vw|=\sqrt[]{i^2+j^2} \\ |vw|=\sqrt[]{(14.4)^2+(-6.47)^2} \\ |vw|=15.787 \\ |vw|\cong15.79 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rua9hdfwgt6di1r9pphq7cusogzxq0549z.png)
Therefore the magnitude of the resultant vector = 15.79 (nearest hundredth)