Answer
21.44 feet
Explanations:
According to the question, we have the following information
Angle of elevation = 4.8degrees
Height off the ramp = 1.8 foot
Required
The minimum horizontal length for the ramp
The required sketch of the ramp is shown below:
From the diagram above, we can use the SOH CAH TOA identity to determine the value of horizontal length "x"
![\tan \theta=\frac{\text{opposite}}{\text{adjacent}}=(1.8)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/k48jvgw4yn9js3r1pg8yy83stj55gyfc59.png)
Substitute the given parameters
![\begin{gathered} \tan 4.8^0=(1.8)/(x) \\ x=(1.8)/(\tan 4.8^0) \\ x=(1.8)/(0.08397) \\ x\approx21.44\text{fet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/238ioptvp2y9pofx7q0zr3zy312ayetp67.png)
Therefore the minimum horizontal length for the ramp so it satisfies the angle requirement is approximately 21.44 feet