Answer:
The center of the circle is at;
![(1,-3)](https://img.qammunity.org/2023/formulas/mathematics/college/dsyy1tw1kbyn9qbnqqz5894ivo6qy9mbif.png)
The radius of the circle is;
![r=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/n2qgts3t2v202ndsx4ugvdcmq042ckj479.png)
Step-by-step explanation:
Given the equation of circle;
![x^2+y^2-2x+6y-6=0](https://img.qammunity.org/2023/formulas/mathematics/college/wd60h3h6q55lnnd09yb7lzudl9kv5sy0bs.png)
we want to re-write it in the form;
![(x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/5s77z5lwu6jnvb5vkwanu2jvhq5sh1qkc3.png)
where;
![\begin{gathered} (h,k)\text{ is the center of the circle} \\ r\text{ is the radius} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uxjlp5v5b89p4gb6imlmwyyu4eeidhynzp.png)
Applying Completing the square method;
![\begin{gathered} x^2+y^2-2x+6y-6=0 \\ x^2-2x+1+y^2+6y+9=6+1+9 \\ (x-1)^2+(y+3)^2=16 \\ (x-1)^2+(y+3)^2=4^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d2yzubw6mn3y359iy1d6h1xbyi88kz4lwu.png)
comparing the derived equation to the general form we have;
![\begin{gathered} h=1 \\ k=-3 \\ r=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fmfdjlilj9w8wwey2g1uxykh8wk95gfu9s.png)
Therefore;
The center of the circle is at;
![(1,-3)](https://img.qammunity.org/2023/formulas/mathematics/college/dsyy1tw1kbyn9qbnqqz5894ivo6qy9mbif.png)
The radius of the circle is;
![r=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/n2qgts3t2v202ndsx4ugvdcmq042ckj479.png)