Step-by-step explanation
Factoring by grouping the numerator
Step 1: We rewrite the middle terms as a sum of two terms whose product is a·c = 2·6 = 12 and whose sum is b = -7.
![2x^2-7x+6=2x^2-3x-4x+6](https://img.qammunity.org/2023/formulas/mathematics/college/lxrc2ijsbr93np25rynrg6jxaduxijqete.png)
Step 2 We group the first two terms and last two terms.
![2x^2-7x+6=(2x^2-3x)-4x+6](https://img.qammunity.org/2023/formulas/mathematics/college/hw00ve5twe5vco4g5wksiom87fhv6xfuv1.png)
Step 3: We factor out the greatest common factor from each group.
![2x^2-7x+6=x(2x-3)-2(2x-3)](https://img.qammunity.org/2023/formulas/mathematics/college/z51to5qgbildcq847tgxhijmbiq49kczop.png)
Step 4: We factor the polynomial by factoring out the greatest common factor, 2x - 3.
![2x^2-7x+6=(2x-3)(x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/xmom9cca6dj81zdtffk3tmhwl4yn5ag8b0.png)
Simplifying the expression
We cancel the common factor.
![\begin{gathered} (2x^2-7x+6)/(x-2)=((2x-3)(x-2))/(x-2) \\ (2x^2-7x+6)/(x-2)=2x-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bjaofxibm4edv15t2zc7jjzibw8i8aa37b.png)
Answer
![2x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/li5cphmswye3wx0csj9l6g2jqayzsv987t.png)