Step-by-step explanation
Since we have the function:
![N(t)=975e^(0.3t)](https://img.qammunity.org/2023/formulas/mathematics/college/35wdryo2f3p0vpzo9jbjpv2r3mdski7doo.png)
The standard form of a growth equation is the following:
![N(t)=N_0*e^(kt)](https://img.qammunity.org/2023/formulas/mathematics/college/gos5ap69tn38f2crg6wysqmkhjpq1hqmue.png)
Where N_0 = Initial population k= relative growth rate
a) The relative rate of growth is k=0.3
b) The initial population is 975 bacteria.
c) Plugging in the value t=5 into the expression:
![N(t)=975*e^(0.3*5)](https://img.qammunity.org/2023/formulas/mathematics/college/m1pbfp8ijwbzwecee7i1x7peo7ggxnd8mm.png)
Multiplying numbers:
![N(t)=975*e^(1.5)](https://img.qammunity.org/2023/formulas/mathematics/college/tuusb00sx5t9xa3l4slnttsmhtw84zsh75.png)
Computing the exponent:
![N(t)=975*4.48](https://img.qammunity.org/2023/formulas/mathematics/college/f2vxb2lhwuxykp52mfzykx9j7hynvnsvob.png)
Multiplying terms:
![N(t)=4368](https://img.qammunity.org/2023/formulas/mathematics/college/x95pnexlzo9koph0ojo1xwbhpcancojpvi.png)
There will be 4368 bacteria at the time t=5