Given:
The sixth term of an arithmetic sequence is
![a_6=(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/pxhbe1vm9pq2tmj8e6vlx32naogo91clmr.png)
The twelfth term is
![a_(20)=(5)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/g8x80d1q0k4wjnso4hyhx1wdkbpdwqdau4.png)
To find:
The common difference
Step-by-step explanation:
The nth term formula of an arithmetic sequence is,
![a_n=a+(n-1)d](https://img.qammunity.org/2023/formulas/mathematics/high-school/t99kk5roieipg56xa37yseewl9ybc4zh6i.png)
So, the sixth and twelfth terms become,
![\begin{gathered} a_6=a+(6-1)d \\ (3)/(2)=a+5d..............(1) \\ a_(20)=a+(12-1)d \\ (5)/(2)=a+11d.............(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/azi0yjktu0gigdt0zba7kfqw5tnj0mbzpp.png)
Subtract (1) from (2),
![\begin{gathered} (5)/(2)-(3)/(2)=11d-5d \\ (2)/(2)=6d \\ 6d=1 \\ d=(1)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7e1ekavuiqu0njizj6pzbvllzvc0mcqxfi.png)
Thus, the common difference is,
![d=(1)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/9z5h01dt2353gs1p7tfq57oaywashkktow.png)
Final answer:
The common difference is,
![d=(1)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/9z5h01dt2353gs1p7tfq57oaywashkktow.png)