Given:
Principal(p) = $9000 rate(r) = 7% = 0.07
n=1 (number of time the interest is compounded)
a)
time (t) = 1
Using the formula;
![A=p(1+(r)/(n))^(nt)](https://img.qammunity.org/2023/formulas/mathematics/college/9bbbl7b91l6rvp07kz3zs3ur3yn9c0qugo.png)
![=9000(1+(0.07)/(1))^(1*1)](https://img.qammunity.org/2023/formulas/mathematics/college/bgfi30ydgri321505fhsb576imy60vldhc.png)
![=9000(1.07)](https://img.qammunity.org/2023/formulas/mathematics/college/owv13mpdg5uwowmc741ygiarggywdb1809.png)
![=9630](https://img.qammunity.org/2023/formulas/mathematics/college/90cisj13lttam92clallhl9mqsty806vnl.png)
Hence, the amount owed at the end of the year is $9630
b)
t=2
Substitute the values into the formula and evaluate
![A=9000(1+(0.07)/(1))^(1*2)](https://img.qammunity.org/2023/formulas/mathematics/college/kgbo71myjhcjdassz2aibwxk0gpregfedv.png)
![=9000(1.07)^2](https://img.qammunity.org/2023/formulas/mathematics/college/kofyts298ti46xynoh8hbodk0x76xr7gm1.png)
![=9000(1.1449)](https://img.qammunity.org/2023/formulas/mathematics/college/vqd4yvuivab1le8y3g6o8rt2pdikbx5n07.png)
![=10304.1](https://img.qammunity.org/2023/formulas/mathematics/college/3t8e361trzvc8wnr7i43mf02dgu8j2rv5a.png)
Hence, the amount owed at the end of 2 years is $10304.1