If a variable X has taken n values and its mean is X' then the standard deviation is given by
![s\text{d}=\sqrt[]{((X_1-X^(\prime))^2+(X_2-X^(\prime))^2+\cdots+(X_n-X^(\prime))^2)/(n-1)}](https://img.qammunity.org/2023/formulas/mathematics/college/k68h2yts0y62s2g9isnjw2qs3cs3dim7jt.png)
Given data:
It is given that that there are 12 eggs and there weights are

and there mean weight is 70 grams.
So n=12 and X'=70
So, standard deviation will be
![\begin{gathered} sd=\sqrt[]{((67-70)^2+(67-70)^2+\cdots+(73-70)^2)/(12-1)} \\ sd=\sqrt[]{((67-70)^2+(67-70)^2+\cdots+(73-70)^2)/(11)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/upduelcb20m3hameb7s3d1daa801gdf7i0.png)
So, the correct option is A.