Given-
![\begin{gathered} a_n=(-1)^n \\ a_n=((1)/(2))^n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u5lp7c2bi5o2s98p4c75g29osarke9sgvi.png)
=Required- To find out the following,
![a_(25)\text{ and }_{\text{ }}a_4](https://img.qammunity.org/2023/formulas/mathematics/college/vxfdhbjs0r1g7fea77n86fch0pu6i48uz8.png)
Explanation- For finding the value of
![a_(25),](https://img.qammunity.org/2023/formulas/mathematics/college/qikarfgjavbdj6y6vp1tuz27jon6ty7szr.png)
Putting n=25 in our given sequence we get,
![a_(25)=(-1)^(25)](https://img.qammunity.org/2023/formulas/mathematics/college/oakxsxt9s26797jej36tt915d4m11bmbbc.png)
Since, odd power to a negative number gives a negative result. Hence,
![a_(25)=-1](https://img.qammunity.org/2023/formulas/mathematics/college/o2lbxz7gt5vuocfmg2zxvl02brbrrlwmcj.png)
For the second part,
![\begin{gathered} a_n=((1)/(2))^n \\ a_4=((1)/(2))^4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xy10o914411sdvemq6vtilmb5c59we43nu.png)
which on further solving gives,
![\begin{gathered} a_4=((1)^4)/((2)^4) \\ =(1)/(16) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pxwk4rdut84ezf3kz9t320uo52tywabvsk.png)
Final Answer-
![\begin{gathered} a_(25)=-1 \\ a_4=(1)/(16) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2907gu3bcqleos92a72n2qt37o3uaq3ful.png)