Given the equation of a line, we can use the slope to find the slope of a perpendicular line. If we call m the slope, then the slope of a perpendicular line is:
![Slope\text{ }perpendicular\text{ }line=-(1)/(m)](https://img.qammunity.org/2023/formulas/mathematics/college/rvios55lshlz9fz13q3xeyx5ayw61xsfql.png)
Now, we are given the equation of the line:
![(6x+2)/(4)-y=1-2y](https://img.qammunity.org/2023/formulas/mathematics/college/ekjze0awzlef5a2vyn6s7ew6xq74ten771.png)
To find the slope, we need to rewrite this in slope-intercept form. To do this, we need to solve for y:
![\begin{gathered} (6x+2)/(4)=1-2y+y \\ . \\ (3)/(2)x+(1)/(2)=1-y \\ . \\ -((3)/(2)x+(1)/(2)-1)=y \\ . \\ y=-(3)/(2)x+(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/onbyczsfyfqi2qmfvziamhzswvwacvaear.png)
Then, the slope of this line is -3/2. The slope of a line perpendicular to it is the inverse of the reciprocal:
![Slope\text{ }perpendicular=-(1)/((-(3)/(2)))=(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/6k72b9i2oazem87xpyls0c6a4te6uq1wp9.png)
Now, we know that the slope of the line perpendicular is 2/3, and it must pass through the point (5, -10). We can use the slope- point fomr of a line.
The point-slope form of a line, given slope m and a point P is:
![\begin{gathered} P=(x_P,y_P) \\ . \\ y=m(x-x_P)+y_P \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9z2st8szo84g0w2y7j1ewufialnf2j5agd.png)
IN the perpendicular line, m = 2/3 and P = (5, -10):
![y=(2)/(3)(x-5)-10](https://img.qammunity.org/2023/formulas/mathematics/college/mwocsrpi26u3527wt29axn9x0i814fxf1c.png)
And solve:
![\begin{gathered} y=(2)/(3)x-(2)/(3)\cdot5-10 \\ . \\ y=(2)/(3)x-(10)/(3)-10 \\ . \\ y=(2)/(3)x-(40)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y7ejjw1sbh60nmeadvh0e2vhumpl6y8ynx.png)
The answer is:
![y=(2)/(3)x-(40)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/9ye2ecj3nxz5p9h7z6oxfbyfjyzgjkq31i.png)