Answer: We have to calculate the (i) volume and (ii) the surface area of the cone:
![\begin{gathered} A=\pi r^2+\pi rl\rightarrow(1) \\ \\ V=\pi r^2(h)/(3)\rightarrow(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ng6vbulolomdem2dvi8k5qx90lmuz5ajrs.png)
The formula (1) is for the lateral surface of the cone and the formula (2) is for the volume of the cone, the unknowns are determined as follows:
![\begin{gathered} r=\sqrt{(64\pi)/(\pi)}=8cm \\ \\ r=8cm \\ \\ l=√(r^2+h^2)=√((8cm)^2+(6cm)^2) \\ \\ l=√(100)=10 \\ \\ l=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4x6kl96p1c7kj3eavbe1hng53yskhcqd8n.png)
Therefore the volume and the lateral surface area is calculated as follows:
![\begin{gathered} \begin{equation*} A=\pi r^2+\pi rl \end{equation*} \\ \\ A=\pi(8)^2+\pi(8)(10) \\ \\ A=144\pi cm^2\Rightarrow(x) \\ \\ \begin{equation*} V=\pi r^2(h)/(3) \end{equation*} \\ \\ V=\pi(8cm)^2(6cm)/(3) \\ \\ V=128\pi cm^3\Rightarrow(y) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fvlqzwq1iraezviyw1utkbj106pp8ep0ut.png)
Therefore x and y are the answers.