If the sides of a triangle are 6,8 and 10, and if we know that the shorter side of a similar triangle is 15 the we know that the this relation has to be true so:
![(15)/(6)=(x)/(8)=(y)/(10)](https://img.qammunity.org/2023/formulas/mathematics/college/9nwl5qs169d5sdm4fxixvqj48j41jd22p0.png)
So we can find x and y that are the missing sides of the similar triangle so:
![\begin{gathered} (x)/(8)=(15)/(6) \\ x=(15\cdot8)/(6) \\ x=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ppwtlhjbzi7bit5cjbzwf0bshwhr6xtpbr.png)
and for y:
![\begin{gathered} (y)/(10)=(15)/(6) \\ y=(15\cdot10)/(6) \\ y=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w2bgxxm8sqij3f5ui6tdr5faug7m8u0chp.png)
So the perimeter (P) will be:
![\begin{gathered} P=15+20+25 \\ P=60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5nasb6r364h7n8bellw7k1y8857b0pds49.png)