This are simple interest situations.
THe equation for simple interest is:
![V(t)=P(1+Rt)](https://img.qammunity.org/2023/formulas/mathematics/college/o8ksopov41h3adgqzjeyphxrpw4oyhmqki.png)
Where
t is the time in years
V(t) is the total, the principal amount plus interest
R is the rate of interest
P is the principal value, the amount initially.
in the first case, we have
P = $7000
R = 9% every year
we need to convert it to decimal: 9% / 100 = 0.09
![V(t)=7000(1+0.09t)](https://img.qammunity.org/2023/formulas/mathematics/college/id44c8a2682qm6euq3x250e2cxiktpr0ui.png)
For the second situation:
P = $7000
R = 9% every 7 years
Then, we first convert 9% to decimal: 0.09 and divide it by 7, because we want to express it by t = numer of years.
0.09 / 7 = 9/700
Then equation fo the second case:
![V(t)=7000(1+(9)/(100)t)](https://img.qammunity.org/2023/formulas/mathematics/college/a08goidtfcu0meizkz95wxhwb66aput5mm.png)
If you The last case:
P = $7000
R = 9% every 1/2 year.
9% to decimal: 0.09 and since this is what the value increases half a year, in a year increases twice, 2 · 0.09 = 0.18
![V(t)=7000(1+0.18t)](https://img.qammunity.org/2023/formulas/mathematics/college/zv9o9o4tu5m2z7wvb2fx9nktbo943ppjl3.png)