Given:
![3x-1>5\text{ or }(x)/(2)-4<-5](https://img.qammunity.org/2023/formulas/mathematics/college/93ed7sbvu4us6njvw7zfmcxrkl6vv0ggn2.png)
To find the solutions for this compound inequality, we will first need to solve for x.
![3x-1>5](https://img.qammunity.org/2023/formulas/mathematics/college/ijkie59x5fl9kom645mekmne6pp0ok75eo.png)
![3x>5+1](https://img.qammunity.org/2023/formulas/mathematics/college/76l852p29621j5vg633600rhi6djlbzod9.png)
![3x>6](https://img.qammunity.org/2023/formulas/mathematics/college/6tk4q1th7feb98rv1r9rw97svg6jloltmk.png)
![x>2](https://img.qammunity.org/2023/formulas/mathematics/college/fjphi1ik0vn5v1ma1lbj2dga28a4nzjx82.png)
Since x > 2, this would give us an interval notation of ( 2, ∞ )
![(x)/(2)-4<-5](https://img.qammunity.org/2023/formulas/mathematics/college/rcxhzewjd9j0qw27cfwo72v3ml30t0zayb.png)
![(x)/(2)<-5+4](https://img.qammunity.org/2023/formulas/mathematics/college/2ynpyg7cl6p0y99qwe8gjlz32jikrjwrek.png)
![(x)/(2)<-1](https://img.qammunity.org/2023/formulas/mathematics/college/yksakjlrlgebxoovfccncqj9vslvmxr3p6.png)
![x<-1(2)](https://img.qammunity.org/2023/formulas/mathematics/college/1oputvzxmy340oqbjja3rmfnyc2sxdd4z7.png)
![x<-2](https://img.qammunity.org/2023/formulas/mathematics/college/5otuq7x6cljknkujwt8psxgcz2el2me8yl.png)
Now, since x < -2, this will give us an interval notation of ( -∞, -2 )
Since we see the word OR in our compound inequality, this would mean that the solution for this is ( -∞, -2 ) ∪ ( 2, ∞ )