We can see that the expression is a quadratic expression of the form:
![5\cos ^2(x)+7\cos (x)+2=0](https://img.qammunity.org/2023/formulas/mathematics/college/ep9dhwwl3m3wahou0c2fexn7x995e002zr.png)
Now we can say:
![\cos (x)=\tau](https://img.qammunity.org/2023/formulas/mathematics/college/sz639972kw218tct9rnu1ww4aql61opc1d.png)
And use the quadratic equation:
![\begin{gathered} 5\tau^2+7\tau+2=0 \\ \tau_(1,2)=\frac{-7\pm\sqrt[]{7^2-4\cdot5\cdot2}}{2\cdot5}=\frac{-7\pm\sqrt[]{49-40}}{10}=(-7\pm3)/(10) \\ \tau_1=(-7+3)/(10)=-(4)/(10)=-(2)/(5) \\ \tau_2=(-7-3)/(10)=-(10)/(10)=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vgzh754zd3zrqj33pbyeozjoei0s4kiwhe.png)
The solutions are the values of x such:
![\begin{gathered} \cos (x)=-1 \\ \cos (x)=-(2)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s7g62j45814t5krskbh47xtpc7chc03yn0.png)
We know that if x = π, cos(x) = -1. Thus, π is a solution.
The other solutions are:
![\cos (x)=-(2)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/gsrptsrfjwhsec4ci48ao48952zc4rmos8.png)
And since cos has a period of 2π, the solutions are:
The two other solutions for [0, 2pi) are:
![x=\cos ^(-1)(-(2)/(5))\approx1.9823](https://img.qammunity.org/2023/formulas/mathematics/college/jg3u0evwlkgpz762qck0lvp2gcd31d1spf.png)
And:
![x=2\pi-\cos ^(-1)(-(2)/(5))\approx4.3008](https://img.qammunity.org/2023/formulas/mathematics/college/442sduex59wisapdyxvf174pztdbugd35n.png)
All the solutions in the interval are:
![x=1.9823,\pi,4.3008^{}](https://img.qammunity.org/2023/formulas/mathematics/college/12yma9xwr3xq3h7x8vf3u6dldg2gsmzm12.png)