To check for the congruency of the triangle, we will attempt to prove the Side-Side-Side (SSS) Congruence Postulate.
This we can do by finding the distance of the line segments of the triangles.
The Distance Formula is given as
![r=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/xq5av3ei1xidn19bdo53i7s73it0loy0m4.png)
The coordinates of the vertices are:
![\begin{gathered} A\to(-3,-2) \\ B\to(4,-3) \\ C\to(-1,2) \\ D\to(-2,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nm501xcs3ucofp7b3v6eny32qjbmzhq9fi.png)
Length of AB:
![\begin{gathered} AB=\sqrt[]{(4-\lbrack-3\rbrack)^2+(-3-\lbrack-2\rbrack)^2} \\ AB=\sqrt[]{7^2+\lbrack-1\rbrack^2}=\sqrt[]{49+1} \\ AB=\sqrt[]{50} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1mfqhycndbv8xyza1dt5w0tjqcuifko30d.png)
Length of BC:
![\begin{gathered} BC=\sqrt[]{(-1-4)^2+(2-\lbrack-3\rbrack)^2} \\ BC=\sqrt[]{\lbrack-5\rbrack^2+5^2}=\sqrt[]{25+25} \\ BC=\sqrt[]{50} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eklguwzzf8tng2qc00qkjtvpfgj9s13fkd.png)
Length of AD:
![\begin{gathered} AD=\sqrt[]{(-2-\lbrack-3\rbrack)^2+(0-\lbrack-2\rbrack)^2} \\ AD=\sqrt[]{1^2+2^2}=\sqrt[]{1+4} \\ AD=\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8nn1fxd2u96hj8sbwq53qpydqbau47fp59.png)
Length of CD:
![\begin{gathered} CD=\sqrt[]{(-2-\lbrack-1\rbrack)^2+(0-2)^2} \\ CD=\sqrt[]{\lbrack-1\rbrack^2+\lbrack-2\rbrack^2}=\sqrt[]{1+4} \\ CD=\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ijzdeytfwn7h5r3ud9cc2adntpmnefb6sa.png)
For the SSS Congruence Postulate to apply, we must have 3 congruent sides.
From our calculations above, we have
![\begin{gathered} |AB|\equiv|BC| \\ |AD|\equiv|CD| \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yol89qoct8vj5bpgssp4nx8hdesz3ri9o9.png)
Note that |DB| is a common side in both triangles.
This proves that both triangles are congruent.