49.2k views
0 votes
Verify algebra radically if the function is even, odd, or neither.Need help with #7

Verify algebra radically if the function is even, odd, or neither.Need help with #7-example-1

1 Answer

5 votes

SOLUTION

(7). For a function to be even, then


f(x)=f(-x)

And if a function is odd, then


f(x)=-f(-x)

Now, let us check


\begin{gathered} f(x)=x\sqrt[]{4-x^2} \\ f(-x)\text{ becomes , that is replacing }x\text{ with -}x \\ f(-x)=-x\sqrt[]{4-(-x)^2} \\ f(-x)=-x\sqrt[]{4-x^2} \\ So,\text{ }f(x)=x\sqrt[]{4-x^2}\text{ and }f(-x)=-x\sqrt[]{4-x^2}\text{ } \\ we\text{ can s}ee\text{ that }f(x)\\e f(-x) \end{gathered}

Hence, the function is not even.

Let's check for odd


\begin{gathered} \text{For odd} \\ f(x)=-f(-x) \\ f(x)=x\sqrt[]{4-x^2}\text{ } \\ -f(-x)=-(-x\sqrt[]{4-(-x)^2} \\ -f(-x)=-(-x\sqrt[]{4-x^2} \\ -f(-x)=x\sqrt[]{4-x^2} \\ \text{Now we can s}ee\text{ that }f(x)=x\sqrt[]{4-x^2}\text{ and }-f(-x)=x\sqrt[]{4-x^2} \\ So,\text{ }f(x)=-f(-x) \end{gathered}

Hence the function is odd

User Johannix
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories