Given the expression in the image, we first get the resulting fraction from the calculations though the following steps.
Step 1: We factorise the 4 quadratic equations:
![9x^2+3x-20](https://img.qammunity.org/2023/formulas/mathematics/college/5cm385png14mwef4lxwphcqvpptckcl53a.png)
Factors of the equation above after factorisation will be;
![\begin{gathered} 9x^2+3x-20 \\ (3x-4)(3x+5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wa661ogxld0sbwjzrluecqstnb28jmktio.png)
Equation 2:
![3x^2-7x+4_{}](https://img.qammunity.org/2023/formulas/mathematics/college/ofpqkf1y0ml3o9kw1ghm29gceaboctoqz1.png)
Factors of the equation above after factorisation will be;
![\begin{gathered} 3x^2-7x+4 \\ (x-1)(3x-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q9ofsohv7bhk0raeagtj2746la7jkny3v3.png)
Equation 3:
![6x^2+4x-10](https://img.qammunity.org/2023/formulas/mathematics/college/bpp6r84ch6r1u7io88ssw2dhyo0efvhpix.png)
Factors of the equation above after factorisation will be;
![\begin{gathered} 6x^2+4x-10 \\ 2(x-1)(3x+5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/48avnxelv9kwp9sogdwrq8k8wq1wq3wpqz.png)
Equation 4:
![x^2-2x+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/ggx58qfkwlipq58bco6neudrrwssty3vpa.png)
Factors of the equation above after factorisation will be;
![\begin{gathered} x^2-2x+1 \\ (x-1)(x-1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pvsd6ziijosuvvidqhhny134zfsmxlyeut.png)
Step 2: To compute the division, we have
![\begin{gathered} ((3x-4)(3x+5))/((x-1)(3x-4))\text{ divided by} \\ \\ (2(x-1)(3x+5))/((x-1)(x-1)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xuskscq2brgmy7n62laawurwfc0zr3qhdg.png)
We have:
![\begin{gathered} ((3x+5))/((x-1))\text{ divided by} \\ \\ (2(3x+5))/((x-1)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y9c3zn9wkz0npky2dsl1m3mub0n5np2qbh.png)
This gives us:
![\begin{gathered} (3x+5)/(x-1)*(x-1)/(2(3x+5)) \\ \text{After division, we have:} \\ (1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ib2z20k7t2uky24vr0hv57vrn5c4nehgn.png)
From the final fraction which is 1/2, it can be seen that the numerator is 1 while the denominator is 2.