177k views
1 vote
Let x equals negative 31 times pi over 6 periodPart A: Determine the reference angle of x. Part B: Find the exact values of sin x, tan x, and sec x in simplest form.

Let x equals negative 31 times pi over 6 periodPart A: Determine the reference angle-example-1
User Yangmei
by
4.1k points

1 Answer

3 votes

An angle's reference angle is the measure of the smallest, positive, acute angle t formed by the terminal side of the angle t and the horizontal axis.

Given the value of x to be


x=(-31\pi)/(6)

To get the reference angle of x, we will need to add an even multiple of pi to x

So we will have


6\pi+(-(31\pi)/(6))=(5\pi)/(6)

We have the reference angle to be:


(5\pi)/(6)

Part B

To find sin x

we will have


\begin{gathered} \\ \sin x=\sin (5\pi)/(6)=(1)/(2) \\ \text{Therefore } \\ \sin x=(1)/(2) \end{gathered}

Similarly, we will have tan x to be


\begin{gathered} \tan x=\tan (5\pi)/(6)=-\frac{\sqrt[]{3}}{3} \\ \end{gathered}

For sec x


\begin{gathered} \sec x=(1)/(\cos x) \\ so\text{ let us check cos x} \\ \cos x=\cos (5\pi)/(6)=-\frac{\sqrt[]{3}}{2} \\ \\ \text{Next,}we\text{ can compute} \\ \sec x=(1)/(\cos x)=\frac{1}{-\frac{\sqrt[]{3}}{2}}=-\frac{2}{\sqrt[]{3}} \end{gathered}

Simplifying further


\sec x=\frac{-2\sqrt[]{3}}{3}

Let x equals negative 31 times pi over 6 periodPart A: Determine the reference angle-example-1
User Husni Salax
by
5.8k points