An angle's reference angle is the measure of the smallest, positive, acute angle t formed by the terminal side of the angle t and the horizontal axis.
Given the value of x to be

To get the reference angle of x, we will need to add an even multiple of pi to x
So we will have

We have the reference angle to be:

Part B
To find sin x
we will have

Similarly, we will have tan x to be
![\begin{gathered} \tan x=\tan (5\pi)/(6)=-\frac{\sqrt[]{3}}{3} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4cps5i36mrebp4trmbe0duuz2cyszjmp66.png)
For sec x
![\begin{gathered} \sec x=(1)/(\cos x) \\ so\text{ let us check cos x} \\ \cos x=\cos (5\pi)/(6)=-\frac{\sqrt[]{3}}{2} \\ \\ \text{Next,}we\text{ can compute} \\ \sec x=(1)/(\cos x)=\frac{1}{-\frac{\sqrt[]{3}}{2}}=-\frac{2}{\sqrt[]{3}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5ghzjspius2dh25ng0p5x2sg4gq6ty03bt.png)
Simplifying further
![\sec x=\frac{-2\sqrt[]{3}}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/f8ptqof9hopyhtil4nx19po1bfbxw89ta3.png)