The coordinates of the vertices of triangle are,
P(-4,2), Q(2,-5) and R(5,4).
Determine the length of side PQ by using distance formula.
![\begin{gathered} PQ=\sqrt[]{(2-(-4))^2+(-5-2)^2} \\ =\sqrt[]{(6)^2+(7)^2} \\ =\sqrt[]{36+49} \\ =\sqrt[]{85} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xcz7dfksvcjp0feavzion46r66eb96241o.png)
Determine the length of side PR by using distance formula.
![\begin{gathered} PR=\sqrt[]{(-4-5)^2+(2-4)^2} \\ =\sqrt[]{(-9)^2+(2)^2} \\ =\sqrt[]{81+4} \\ =\sqrt[]{85} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/37fvbxbxq7swbpp9f6xbzj16bju5zxrp4o.png)
Determine the length of side QR by using distance formula.
![\begin{gathered} QR=\sqrt[]{(2-5)^2+(-5-4)^2} \\ =\sqrt[]{(3)^2+(-9)^2} \\ =\sqrt[]{9+81} \\ =\sqrt[]{90} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zwh9p1hzvxd1farw1k48w3emuw1yauqwso.png)
Since length of side PR and side PQ is equal to each. The triangle with two equal sides are called isosceles triangle.
So triangle PQR is isosceles triangle.