To find:
At what rate is the radius of the balloon increasing when the volume is 36pi cubic meters.
Solution:
It is known that the volume of the sphere is given by:
![V=(4)/(3)\pi r^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/zraet4fw93vx9gjz3iextthjo546ibcpwc.png)
Differentiate the volume with respect to time:
![\begin{gathered} (dV)/(dt)=(4)/(3)*3\pi r^2((dr)/(dt)) \\ (dV)/(dt)=4\pi r^2((dr)/(dt)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s00tvslnein89vx3pqhz32k6x5pj5xhz64.png)
Here, given that dV/dt = 3pi, V = 36pi. First find the radius when V = 36pi.
![\begin{gathered} V=(4)/(3)\pi r^3 \\ 36\pi=(4)/(3)\pi r^3 \\ 27=r^3 \\ r=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kvwpmljh1ik8sgl69f6gt2mv0mldj66emk.png)
Now, the rate of change of radius can be obtained as follows:
![\begin{gathered} 3\pi=4\pi(3)^2*(dr)/(dt) \\ (3\pi)/(36\pi)=(dr)/(dt) \\ (1)/(12)=(dr)/(dt) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3v5xd4ugac4spombm0t7h05sr7q4mwfz28.png)
Thus, the radius of the sphere is increasing at the rate of 1/12 m/min when the volume is 36pi.