Given,
The coefficient of thermal expansion of iron, α₁=11.8×10⁻⁶ °C⁻¹
The coefficient of thermal expansion of copper, α₂=16.5×10⁻⁶ °C⁻¹
The length of both strips, L=10 cm=0.1 m
The initial temperature, T₁=20 °C
The final temperature, T₂=100 °C
The increase in the length due to change in the temperature is given by,
![\Delta L=\alpha L\Delta T](https://img.qammunity.org/2023/formulas/physics/college/vx1zms3q16ov8yjw1nhz9j0jx8mewyrwe9.png)
Thus, the change in the length of the iron strip is,
![\begin{gathered} \Delta L_1=11.8*10^(-6)*0.1*(100-20) \\ =94.4*10^(-6)\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/f9spsdke5m247koz23qwifx7mzxm0q94rn.png)
Therefore the new length of the iron strip when the temperature rises to 100 °C is
![\begin{gathered} L_(n1)=L+\Delta L_1 \\ =0.1+94.4*10^(-6) \\ =0.1000944\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/hsi1ejvi3w7lrsdn10z8g1xnlmokgkxv2m.png)
The change in the length of the copper strip is given by,
![\begin{gathered} \Delta L_2=16.5*10^(-6)*0.1*(100-20) \\ =132*10^(-6)\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/8lu3ztt15trck1prnx47h4hxc1ipmaweir.png)
Thus the new length of the copper strip is,
![\begin{gathered} L_(n2)=\Delta L_2+L \\ =0.1+132*10^(-6) \\ =0.100132\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/21t3g9m4k1g9o8389nhawrms7ld7p3dm9s.png)
Thus the difference in the new lengths of the two metal strips is
![\begin{gathered} \Delta l=L_(n2)-L_(n1) \\ =0.100132-0.1000944 \\ =37.6*10^(-6)\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/x7vobfgzm8s7b98vhjpixmq6dl80fvbb0c.png)
Thus the change in the length of the two metal strips when the temperature is increased to 100 °C is 37.6×10⁻⁶ m.