Since we have the recursive formula, we can find the value of a₂, a₃, and a₄.
![a_n=a_(n-1)+1\Rightarrow\text{ Recursive formula}](https://img.qammunity.org/2023/formulas/mathematics/college/qhhdnpzlp97i5jbv1lr9iqmbaroab9h05s.png)
To find the value of a₂, we replace the value of a₁ in the above equation, and we operate:
![\begin{gathered} n=2 \\ a_2=a_(2-1)+1 \\ a_2=a_1+1 \\ a_2=9_{}+1 \\ a_2=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/emkc6iauk57fqi7yfju5p1521ufm31v0pq.png)
Now, to find the value of a₃, we replace the value of a₂ in the recursive formula, and we operate:
![\begin{gathered} n=3 \\ a_3=a_(3-1)+1 \\ a_3=a_2+1 \\ a_3=10+1 \\ a_3=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zl126lmme28m8w9s9tmck5v3u0yulumg66.png)
Finally, to find the value of a₄, we replace the value of a₃ in the recursive formula, and we operate:
![\begin{gathered} n=4 \\ a_4=a_(4-1)+1 \\ a_4=a_3+1 \\ a_4=11+1 \\ a_4=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hhfaoky3p3qfjqsxbzkjk0bzwog472g44g.png)
Therefore, the value a₄ is the 12.