190k views
0 votes
Determine f’(0) for f(x) = 2 sin x cos x

1 Answer

2 votes

Given:


f(x)=2sinx.cosx

To find: Determine f'(0)=?

Step-by-step explanation:

We have given that


f(x)=2sinx.cosx.......(1)

We know the identity of the trigonometric


sin2x=2sinx.cosx

Eq.1 becomes


f(x)=sin2x

Now, differentiate f(x) w.r.to x

Therefore,


\begin{gathered} f^(\prime)(x)=(d)/(dx)[sin(2x)] \\ \\ f^(\prime)(x)=cos2x*(d)/(dx)(2x) \\ \\ f^(\prime)(x)=cos2x*(2) \\ \\ f^(\prime)(x)=2cos2x \end{gathered}

Hence,


f^(\prime)(x)=2cos2x
f^(\prime)(x)=2cos2x

For the value of f'(0) put x = 0 in f'(x)

We get,


\begin{gathered} f^(\prime)(0)=2cos2(0) \\ \\ f^(\prime)(0)=2* cos0 \end{gathered}

We know that


cos0=1

So,


\begin{gathered} f^(\prime)(0)=2*1 \\ \\ f^(\prime)(0)=2 \end{gathered}

Answer: f'(0) = 2 for f(x) = 2 sin x cos x.

User Cody Crumrine
by
3.5k points