The total surface area of the prism is the sum of the areas of the bases and the areas of the lateral sides:
![S=2\cdot A_b+A_l](https://img.qammunity.org/2023/formulas/mathematics/college/ellskb68hsd6pnan1mmxq5w6x4v53vr17u.png)
The area of the base corresponds to the area of an equilateral triangle:
![A_b=\frac{\sqrt[]{3}}{4}\cdot L^2](https://img.qammunity.org/2023/formulas/mathematics/college/36o1kv447dvxzehmtbfbwiqrjf1pvylhca.png)
Where L is the length of the edge base. Calculating:
![\begin{gathered} A_b=\frac{\sqrt[]{3}}{4}\cdot6^2 \\ A_b=\frac{\sqrt[]{3}}{4}\cdot36 \\ A_b=9\text{ }\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pm3wvlbji9fmqzr94o724tnxzrlonu065f.png)
The lateral surface is:
Al = Base perimeter * Height
The base perimeter is the sum of its side lengths:
P = L + L + L = 18
Since the height is H = 10:
![\begin{gathered} A_l=18\cdot10 \\ A_l=180 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5coz0gkmv6wnx9mw7bs9yv80xa2wcgq3os.png)
The total area is:
![\begin{gathered} S=2\cdot9\text{ }\sqrt[]{3}+180 \\ \boxed{S=18\text{ }\sqrt[]{3}+180} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m1kcw1fzszbu0yojp3cvr7m683lytetjye.png)