Answer:
Part A; The tower is symmetric about the y- axis; therefore the left side is given by f(-x)
Part B: The tower is approximately 969 ft tall
Part C: : 47 ft
Step-by-step explanation:
Part A:
The tower is symmetric about the y-axis and we know that whenever such a symmetry exists
![f(x)=f(-x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/d5txlwfgs1sgi42dr82a0kuoncotldq3mc.png)
Part B:
Since we cannot evaluate the function at x = 0 to find the length of the tower, we divide the length of the top of the tower by 2 and evaluate the function at the resulting value.
![x=(17.0674)/(2)=8.5337](https://img.qammunity.org/2023/formulas/mathematics/college/w5htmcpdo9n6c1uvasx2v1doix3aiyjbby.png)
Therefore,
![f(8.5337)=-304\ln ((8.5337)/(207))](https://img.qammunity.org/2023/formulas/mathematics/college/3ajtnfjtbtuasypp7gde2dubd1ne0pa3tk.png)
![f(8.5337)\approx969ft](https://img.qammunity.org/2023/formulas/mathematics/college/l9g9muwe3vp6qyitqenwvfkqy6ijpn1xk9.png)
Part C:
To to find where the height is 450 ft, we solve
![450=-304\ln ((x)/(207))](https://img.qammunity.org/2023/formulas/mathematics/college/onjbkexdz8mmt91zbacu2ibuxkp7kv7kdg.png)
Dividing both sides by -304 gives
![-(450)/(304)=\ln ((x)/(207))](https://img.qammunity.org/2023/formulas/mathematics/college/oyj3yxwdu5j297elr1f70nwynh23a1ve9e.png)
rasing both sides to the exponent of e gives
![e^{-(450)/(304)}=e^{\ln ((x)/(207))}](https://img.qammunity.org/2023/formulas/mathematics/college/aa3dmc98urf1rte9f0pfvf9snfmgx913bp.png)
![e^{-(450)/(304)}=(x)/(207)](https://img.qammunity.org/2023/formulas/mathematics/college/sy69rzh6npltakx18h12cj812upls8bn5n.png)
![0.227=(x)/(207)](https://img.qammunity.org/2023/formulas/mathematics/college/hmstv6zgikazxbruie8k94c9s3xy65kxfk.png)
Multiplying both sides by 207 gives
![x\approx47\: ft](https://img.qammunity.org/2023/formulas/mathematics/college/vh4vjmhuy7ltxzdh01u8fp30p8rw8vqku1.png)
which is our answer!