We have to find the values of constants A and B.
Given the equality in the question, we can write:
![8xe^(6x)=(d)/(dx)[(Ax+B)e^(6x)]](https://img.qammunity.org/2023/formulas/mathematics/college/y8bfkes2c8vs0mps7mom7p6ghkn531hgnc.png)
We then can calculate the derivative as:
![\begin{gathered} (d)/(dx)[(Ax+B)e^(6x)] \\ A\cdot(d)/(dx)(xe^(6x))+B\cdot(d)/(dx)(e^(6x)) \\ A(x\cdot6e^(6x)+e^(6x))+B(6e^(6x)) \\ (6Ax+A+6B)e^(6x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4z3apd4krra141durt8ifod58pzac09a30.png)
Then, we can compare the terms:

We compared the linear and independent terms to find equations to solve for A and B.
Then, we can find A as:

and B as:

Answer: A = 4/3 and B = -2/9.