103k views
5 votes
What is the length of the diagonal, d, of the cube shown.

What is the length of the diagonal, d, of the cube shown.-example-1
User Maxmelbin
by
3.9k points

1 Answer

2 votes

\begin{gathered} \\ d=103.9 \end{gathered}

Step-by-step explanation

Step 1

we have a rigth triangle here, then we can use Pythagotas theorem


side^2_1+side^2_2=hypotenuse^2

Let

Step 2

find the sides

side1=60

for side 2

then


\begin{gathered} side_2^2=60^2+60^2 \\ \text{side}^2_2\text{= 3600+3600} \\ \text{side}_2=\sqrt[]{7200} \end{gathered}

Step 3

Let


\begin{gathered} \text{side}_1=60 \\ \text{side}_2=\sqrt[]{7200} \\ \text{hypotenuse = h} \end{gathered}

replace


\begin{gathered} side^2_1+side^2_2=hypotenuse^2 \\ 60^2+(\sqrt[]{7200})^2=h^2 \\ 3600+7200=h^2 \\ 10800=h^2 \\ h=\sqrt[]{10800}=\text{ 103.92} \\ to\text{ the nearesth tenth } \\ 103.9 \end{gathered}

What is the length of the diagonal, d, of the cube shown.-example-1
What is the length of the diagonal, d, of the cube shown.-example-2
User Neemzy
by
3.6k points