Part (A)
The tension in the ligament is equal to the force acting on ligament. The expression for the tension in ligament is,
![F=kx](https://img.qammunity.org/2023/formulas/physics/college/gsgfd23ak05i6usiaouzavlaakehe1dw43.png)
Substitute the given values,
![\begin{gathered} F=(167\text{ N/mm)(}\frac{1\text{ mm}}{10^(-3)\text{ m}})\text{(0.720 cm)(}\frac{1\text{ m}}{100\text{ cm}}) \\ =1202.4\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qws0ad0vas5wgnv6cfdyf19qkbbe9lsnhm.png)
Thus, the tension in the ligament is 1202.4 N.
Part (B)
The elastic energy stored in the ligament can be given as,
![U=(1)/(2)kx^2](https://img.qammunity.org/2023/formulas/physics/college/t4wocinxpky5ozyb8b9ux7fjayymh0dqoz.png)
Substitute the known values,
![\begin{gathered} U=(1)/(2)(167N/mm)(\frac{1\text{ mm}}{10^(-3)\text{ m}})(0.720cm)^2(\frac{1\text{ m}}{100\text{ cm}})^2(\frac{1\text{ J}}{1\text{ Nm}}) \\ \approx4.33\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/vhq4agnbvkk8zlrmr98xt49przpm6udlth.png)
Thus, the elastic potential stored in the ligament is 4.33 J.