83.4k views
2 votes
Select all the correct answers.Which expressions are equivalent to the given expression?510810 I + 10810 20 - 10810 10

Select all the correct answers.Which expressions are equivalent to the given expression-example-1
User GoPro
by
8.3k points

1 Answer

4 votes

Answer:

Options 1 and 4.

Explanation:

Given the expression:


5\log_(10)x+\log_(10)20-\log_(10)10

First, we can rewrite 20 as a product of 2 and 10.


\begin{gathered} 5\operatorname{\log}_(10)x+\operatorname{\log}_(10)20-\operatorname{\log}_(10)10=5\operatorname{\log}x+\operatorname{\log}_(10)(2*10)-\operatorname{\log}_(10)10 \\ \text{ By the product law of logarithm: }log(a* b)=loga+logb \\ =5\operatorname{\log}_(10)x+\operatorname{\log}_(10)2+\operatorname{\log}_(10)10-\operatorname{\log}_(10)10 \\ =5\operatorname{\log}_(10)x+\operatorname{\log}_(10)2 \\ \text{ By the power law of logarithms: }nlogx=\log x^n \\ =\operatorname{\log}_(10)x^5+\operatorname{\log}_(10)2 \\ \text{ Applying the product law:} \\ =\operatorname{\log}_(10)(2x^5) \end{gathered}

This is equivalent to Option 1.

Next:


\begin{gathered} 5\operatorname{\log}_(10)x+\operatorname{\log}_(10)20-\operatorname{\log}_(10)10 \\ \text{Apply}\imaginaryI\text{ng the power law: }n\log x=\log x^n \\ =\operatorname{\log}x^5+\operatorname{\log}_(10)20-\operatorname{\log}_(10)10 \\ \text{ By the product law of logarithm: }log(a* b)=loga+logb \\ =\operatorname{\log}_(10)(20x^5)-\operatorname{\log}_(10)10 \\ By\text{ the unity law of logarithms: }\log_aa=1 \\ =\operatorname{\log}_(10)(20x^5)-1 \end{gathered}

This is equivalent to Option 4.

Options 1 and 4 are the equivalent options.

User Tomer Pintel
by
7.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories