ANSWER:
![x^(3)+5x^(2)+4x](https://img.qammunity.org/2023/formulas/mathematics/college/6905bszxikeg91l45g5wco7ux94hkkwx3o.png)
Explanation:
If we have the roots, which would be the zeros of an equation, then we convert each root into a factor and the product of all these factors is the polynomial, like this:
![\begin{gathered} x=0 \\ \\ x-4\rightarrow x+4=0 \\ \\ x-1\operatorname{\rightarrow}x+1=0 \\ \end{gathered}]()
We multiply them like this:
![\begin{gathered} x\cdot \left(x+4\right)\left(x+1\right) \\ \\ x\cdot(x^2+x+4x+4) \\ \\ x^3+x^2+4x^2+4x \\ \\ x^3+5x^2+4x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g0t61s68my9txepvf99ex5q8f77zfpg2t4.png)
Therefore, the polynomial equation that has the given roots is:
![x^(3)+5x^(2)+4x](https://img.qammunity.org/2023/formulas/mathematics/college/6905bszxikeg91l45g5wco7ux94hkkwx3o.png)