Standard form of a function is
![a\sin (bx+c)\pm d](https://img.qammunity.org/2023/formulas/mathematics/high-school/4v2tbj1dqq4p3qoxarvnalncyi842sw1q1.png)
![y=\sin ((\pi)/(6)x+\pi)-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/alr12fy17a89rnufni2qfzrshj9cehalty.png)
So by comparing the given equation to the standard form, we get
a=1, b=pi/6, c=pi, d=3
amplitude can be written as mod a or
![\lvert a\rvert=\lvert1\rvert=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/gray022wyungbmvgk45djnssezn8t0rybo.png)
So the amplitude is 1
Now for the period, we use generalization as
![(2\pi)/(\lvert b\rvert)\text{radians}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6ozzc78eklpt2h7bz8fxv0j4c4uyj9go9n.png)
![=(2\pi)/(\lvert(\pi)/(6)\rvert)=(2\pi)/((\pi)/(6))=2*6*(\pi)/(\pi)=12](https://img.qammunity.org/2023/formulas/mathematics/high-school/frktja07it2cb6chf6gkbirxcuy37r6cv3.png)
So the period is 12
Here, c is the phase shift, so c=pi
Hence phase shift is pi
Midline is the line that runs between maximum and minimum values
Since, the amplitude is 1 and the phase shift is -pi, the minimum and maximum values are
![\min =\text{ 1-}\pi\text{ }=1-\pi_{}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zqae29np3dn0mmjnxe7orgoc6dzvjojbsy.png)
![\max =1+\pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/f6toktnm3d0gpinl9it0r9iqnz0ulrvnqf.png)
Midline will be the centre of region (1+pi, 1-pi)
So the midline will be
![(1+\pi-(1-\pi))/(2)=(2\pi)/(2)=\pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/202qnom9v7tkp50dyuvftc334j5d25jovp.png)