We have
![f(x)=(1)/(2)(x-1)^2-2](https://img.qammunity.org/2023/formulas/mathematics/college/hsd59gv8xfrf9fogi2f1crkdo5ya20vkc0.png)
This is a parabola in the vertex form, we can see that the vertex of the parabola is
![(1,-2)](https://img.qammunity.org/2023/formulas/mathematics/college/on38ryhgnfayeupcaxbbadg9zpkeb5pexx.png)
Because of the vertex form:
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
There the vertex is
![(h,k)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r1bijgiz1knkpv8mbwskalqzfunmt8qgad.png)
Then, we can already plot one point of the parabola
![(1,-2)](https://img.qammunity.org/2023/formulas/mathematics/college/on38ryhgnfayeupcaxbbadg9zpkeb5pexx.png)
Let's also find the y-intercept, doing x = 0
![\begin{gathered} f(x)=(1)/(2)(x-1)^(2)-2 \\ \\ f(0)=(1)/(2)(0-1)^2-2 \\ \\ f(0)=(1)/(2)(-1)^2-2 \\ \\ f(0)=(1)/(2)-2 \\ \\ f(0)=-(3)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f0ue54jftixggv5kdy6uwp8njamgvb1bbn.png)
Therefore we have another point
![(0,-3/2)](https://img.qammunity.org/2023/formulas/mathematics/college/np9xs75ot51pd62aqsxd2xx90ja765nka3.png)
We can also find the zeros of that parabola doing y = 0
![\begin{gathered} 0=(1)/(2)(x-1)^2-2 \\ \\ (1)/(2)(x-1)^2=2 \\ \\ (x-1)^2=4 \\ \\ (x-1)^2=4=\begin{cases}x-1={2} \\ x-1=-2\end{cases} \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ff38ds5pyt171zia7n5egmwbhtbn06vn1q.png)
Solving the two linear equations we get the zeros
![\begin{gathered} x-1=2\Rightarrow x=3 \\ x-1=-2\operatorname{\Rightarrow}x=-1 \end{gathered}]()
The zeros are 3 and -1. We have all the points to draw a perfect parabola!
Draw the parabola