Given data:
* The mass of the first spherical object is,
![m_1=3.1*10^5\text{ kg}](https://img.qammunity.org/2023/formulas/physics/college/s6wbvaj740hdgdeloyjn1c7cbxi6nok5bc.png)
* The mass of the second spherical object is,
![m_2=6.5*10^3\text{ kg}](https://img.qammunity.org/2023/formulas/physics/college/4fsuzuen6jsa57s37kuqwte1gwvk7fy8pk.png)
* The force of attraction between the objects is,
![F=65\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/houi9r072qk3ftqpoj57jfj8kr94onl516.png)
Solution:
The gravitational force of attraction between the spherical object in terms of the distance between their centers is,
![F=(Gm_1m_2)/(d^2)](https://img.qammunity.org/2023/formulas/physics/college/yjo5wqtuqfpsh3k3wqp5zt58p20es4y56q.png)
where G is the gravitational constant and d is the distance between the centers of spherical objects,
Substituting the known values,
![\begin{gathered} 65=\frac{6.67*10^(-11)^{}*3.1*10^5*6.5*10^3}{d^2} \\ d^2=(6.67*10^(-11)*3.1*10^5*6.5*10^3)/(65) \\ d^2=2.07*10^(-11+5+3) \\ d^2=2.07*10^(-3) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/7muvss5bjdp0698b9dkt1vz302h0h24deg.png)
Thus, the distance between the centers is,
![\begin{gathered} d=\sqrt[]{2.07*10^(-3)} \\ d=\sqrt[]{0.207*10^(-2)} \\ d=0.455*10^(-1) \\ d=0.0455\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/hfpvktksyojkx4nusdmwvyywz37zc607vh.png)
Hence, the distance between the centers is 0.0455 meters or 4.6 centimeters.