Given the vertices of the parallelogram:
(3, 3), (7, 3), (2, 1), (6, 1)
Let's find the area of the parallelogram.
We have the parallelogram below:
To find the area of the parallelogram, apply the formula:
Area = base x height.
Let's find the length using the distance formula:
![b=√((y_2-y_1)^2+(x_2-x_1)^2)^](https://img.qammunity.org/2023/formulas/mathematics/college/2r3i6o4dzm1883rqgu4o4fjmq95aw0f576.png)
Where:
(x1, y1) ==> (3, 3)
(x2, y2) ==> (7, 3)
Thus, we have:
![\begin{gathered} b=√((3-3)^2+(7-3)^2) \\ \\ b=√(0^2+4^2) \\ \\ b=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d9mnzqdfqgvy6fqhaivcr5ksnz88fcrjn3.png)
The length of the parallelogram is 4 units.
Also, let's find the width using the distance formula:
(x1, y1) ==> (3, 3)
(x2, y2) ==> (2, 1)
![\begin{gathered} W=√((1-3)^2+(2-3)^2) \\ \\ W=√((-2)^2+(-1)^2) \\ \\ W=√(4+1) \\ \\ W=√(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y00e6wolpirm95mbi6t6mjdc9zmty0q9sy.png)
The width of the parallelogram is √5 units.
Distance from x to y = 1 unit.
To find the height, apply Pythagorean theorem:
![\begin{gathered} h=\sqrt{(√(5))^2-1^2} \\ \\ h=√(5-1) \\ \\ h=√(4) \\ h=2 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/riht730fcv3gq3h281ud5c9p5xfsk2y953.png)
The height of the parallelogram is 2 units.
To find the area, we have:
Area = base x height
Area = 4 x 2
Area = 8 square units.
Therefore, the area of the parallelogram is 8 square units.
ANSWER:
C. 8 sq. units.