We have the following events:
![\begin{gathered} R_1=\text{Andrew picks a red ball} \\ R_2=\text{Betsy picks a red ball} \\ R_3=\text{Cam picks a red ball} \\ R_4=\text{Doug picks a white ball} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/he616yglsfjl6wqv05dlgyn8f12o18vc48.png)
since the game is without replacement, then the probabilites are:
![\begin{gathered} P(R_1)=(7)/(10) \\ P(R_2)=(6)/(9) \\ P(R_3)=(5)/(8) \\ P(R_4)=(3)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qzliv5k2ck2n2xq8sfyrw3h73h37cnwtt9.png)
therefore, if we calculate the probability of the intersection of these events (since we want them to happen at the same time) we get:
![P(R_1\cap R_2\cap R_3\cap R_4)=(7)/(10)\cdot(6)/(9)\cdot(5)/(8)\cdot(3)/(7)=(630)/(5040)=(1)/(8)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/1j3lvkdc29p0bkgxg3n2widtwg7jkixeun.png)
Therefore, the probability that Doug win the $160 is 1/8