ANSWER and EXPLANATION
The polynomial has a degree of 3. This means that it has 3 roots.
Let the roots of the polynomial be a, b, and c such that:
![(x-a)(x-b)(x-c)=0](https://img.qammunity.org/2023/formulas/mathematics/college/514wve3j5igpeamt2nktxbx7v02ejo31h9.png)
We are given two roots already (-1, 2). This implies that:
![(x+1)(x-2)(x-c)=0](https://img.qammunity.org/2023/formulas/mathematics/college/kj0m5enyhlilq61whd1pn7r8tkp6ur0dnz.png)
Expand the equation:
![\begin{gathered} (x^2-x-2)(x-c)=0_{} \\ \Rightarrow x^3-cx^2-x^2+cx-2x+2c=0 \\ x^3-(c+1)x^2+(c-2)x+2c=0^{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jhu604x5vfcs7y9mt9572bcxcfg69dsrcj.png)
We are given the following conditions:
![\begin{gathered} f(-2)>0 \\ f(0)<0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ks5zu38vlziuyfkcqgsk6bibtb2v8myq80.png)
Applying the first condition:
![\begin{gathered} (-2)^3-(c+1)(-2)^2+(c-2)(-2)+2c>0 \\ -8-4c-4-2c+4+2c>0 \\ \Rightarrow-8-4c>0 \\ \Rightarrow4c<-8 \\ c<-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/swntgzqbudis83e6k439jp1u0c2cfn9fcf.png)
Applying the second condition:
![\begin{gathered} (0)^3-(c+1)(0)+(c-2)(0)+2c<0 \\ \Rightarrow2c<0 \\ c<0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3frv5t25qwcxp0ed8rve3nj17whap19f9m.png)
Therefore, we have that:
![\begin{gathered} c<0;c<-2 \\ \Rightarrow c<-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gm4swf61czpqq53q9003csdfl8blfygp5c.png)
Therefore, the third root can take any values that are less than -2.