The function given describes the difference in lenght after theta seconds:
![f(\theta)=2sin\theta+\sqrt[\placeholder{⬚}]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/li47u60r118b7li948i05bwx6rr1l4lvje.png)
Part A:
When the pogo stick's spring is equal to its no compressed lenght is when the difference is equal to 0.
therefore, We have to do f(theta)=0.
![\begin{gathered} f(\theta)=0 \\ 2sin\theta+\sqrt[\placeholder{⬚}]{2}=0 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3lj26ebuhv140jdi34nfhp43tc8k3vok1p.png)
Solving for theta:
![\begin{gathered} 2sin\theta=-\sqrt[\placeholder{⬚}]{2} \\ sin(\theta)=\frac{-\sqrt[\placeholder{⬚}]{2}}{2} \\ \theta=sin^(-1)(\frac{-\sqrt[\placeholder{⬚}]{2}}{2})=-(1)/(4)\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4fuuyt1bw141r6u575n8t06o3nu8ertf0v.png)
Part B:
If theta is equal to 2*theta in the interval [0,2pi)
![f(2\theta)=2sin2\theta+\sqrt[\placeholder{⬚}]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/6ggwcs6i8e9tbrar0a7d17miig0q1tzqgf.png)
Evaluating in 0 and 2pi:
![\begin{gathered} f(0)=2s\imaginaryI n2*0+√(2)=2*0+\sqrt[\placeholder{⬚}]{2}=\sqrt[\placeholder{⬚}]{2} \\ f(2(2\pi))=2s\imaginaryI n2*2\pi+√(2)=2*sin4\pi+\sqrt[\placeholder{⬚}]{2}=2*0+\sqrt[\placeholder{⬚}]{2} \\ f(2*(\pi)/(2))=2s\imaginaryI n2*(\pi)/(2)+√(2)=2*sin\pi+\sqrt[\placeholder{⬚}]{2}=2*0+\sqrt[\placeholder{⬚}]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rck3u69ixcwdc9cfplo1qs6lhg81mome9o.png)
Is the same than the original function because the sin of (2n*pi) is going to be always 0.
Part C:
Given the function for the another pogo:
![g(\theta)=1-cos^2\theta+\sqrt[\placeholder{⬚}]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/2ii1433qjh4c1or8bj2qvg0wzecf7kduvb.png)
As you can see, by trigonometric identity, we can rewrite the function g of the following way:

Substituing:
![g(x)=sin^2+\sqrt[\placeholder{⬚}]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/vipef2ah6zahayaos1qpuw956o2zac1nu6.png)
Matching g and f:
![\begin{gathered} sin^2\theta+\sqrt[\placeholder{⬚}]{2}=2sin\theta+\sqrt[\placeholder{⬚}]{2} \\ sin^2\theta=2sin\theta \\ sin\theta=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rdypev5c3ccyivpa5iqs1vc0fblsnemrhm.png)
Both length will be equal when the sin of theta is equal to 2.