8.4k views
5 votes
Let be two sets E and F such that:E = {x € R: -4 ≤ x ≤ 4}F = = xWhat is the complement of E?Make the product between the complementary of E and F

User Gengns
by
5.0k points

1 Answer

2 votes

Recall that:


E^c=\mleft\lbrace x\in\R\colon x\\otin E\mright\rbrace\text{.}

Since


E=\mleft\lbrace x\in\R\colon-4\le x\le4\mright\rbrace\text{.}

Therefore:


\begin{gathered} E^c=\mleft\lbrace x\in\R\colon x\\otin E\mright\rbrace=\lbrace x\in\R\colon x<-4\text{ or x>4}\} \\ =\mleft\lbrace x\in\R\colon x<-4\mright\rbrace\cup\lbrace x\in\R\colon x>4\rbrace\text{.} \end{gathered}

Now, the cartesian product between the complementary of E and F is:


E^c* F=(\lbrace x\in\R\colon x<-4\rbrace\cup\lbrace x\in\R\colon x>4\rbrace)*(\mleft\lbrace x\in\R\colon\mright|x|=x\})\text{.}

Now, recall that:


\begin{gathered} |x|=x\text{ if and only if x}\ge0, \\ (A\cup B)* C=A* C\cup B* C. \end{gathered}

Therefore:


E^c* F=(\lbrace x\in\R\colon x<-4\rbrace*\lbrace x\in\R\colon x\ge0\})\cup(\lbrace x\in\R\colon x>4\rbrace)*\lbrace x\in\R\colon x\ge0\})\text{.}

Answer:


\begin{gathered} E^c=\lbrace x\in\R\colon x<-4\rbrace\cup\lbrace x\in\R\colon x>4\rbrace\text{.} \\ E^c* F=(\lbrace x\in\R\colon x<-4\rbrace*\lbrace x\in\R\colon x\ge0\})\cup(\lbrace x\in\R\colon x>4\rbrace)*\lbrace x\in\R\colon x\ge0\})\text{.} \end{gathered}

User Netrevisanto
by
4.7k points